Multiscale simulation and Al-driven approach for advanced materials and semiconductor processing

Sung Beom Cho

Dept. Materials Science & Engineering Ajou University

What is modeling?

How about semiconductor process modeling?

In billiards, the trajectory from F=ma is enough. However, materials are more complex!

(atomic)structure process (micro)structure

e property

applications

It cannot be described with single equation. It's Multiscale and Multiphysics problem!

Precursor simulations (DFT)

Nucleation theory simulation (DFT)

 $P_{\Omega 2}$ = 0.21 atm, Temperature \approx 950 °C

Nucleation kinetics analysis (MD)

HVPE chamber modeling based on Multiphysics FEM

Optimizing process

Experimental validation on deposition quality

Concluding Remarks

- The key idea of modeling is capturing essential physics in complex by simplifying the phenomena
- For real problem, we need to solve multiple governing equations in multiscale & multiphysics dimension
- We have constructed AI-assisted simulator to get optimized recipe

